
Boolean Satisfiability 
with Transitivity Constraints 

Randal E. Bryant 
Miroslav N. Velev 

Carnegie Mellon University 
June, 2000 

CMU-CS-00-101 

School of Computer Science 
Carnegie Mellon University 

Pittsburgh, PA 15213 

Supported, in part, by the Semiconductor Research Corporation under contract 00-DC-684 

DISTRIBUTION STATEMENT A 
Approved for Public Release 

Distribution Unlimited 

20000926 028 



Keywords: Formal verification, Boolean satisfiability, Decision procedures 



Abstract 

We consider a variant of the Boolean satisfiability problem where a subset £ of the propositional 
variables appearing in formula Fsai encode a symmetric, transitive, binary relation over iV ele- 
ments. Each of these relational variables, e;j, for 1 < i < j < N, expresses whether or not the 
relation holds between elements i and j. The task is to either find a satisfying assignment to Fsat 
that also satisfies all transitivity constraints over the relational variables (e.g., eit2 A e2,3 =4> ei;3), 
or to prove that no such assignment exists. Solving this satisfiability problem is the final and most 
difficult step in our decision procedure for a logic of equality with uninterpreted functions. This 
procedure forms the core of our tool for verifying pipelined microprocessors. 
To use a conventional Boolean satisfiability checker, we augment the set of clauses expressing Fsat 
with clauses expressing the transitivity constraints. We consider methods to reduce the number of 
such clauses based on the sparse structure of the relational variables. 
To use Ordered Binary Decision Diagrams (OBDDs), we show that for some sets £, the OBDD 
representation of the transitivity constraints has exponential size for all possible variable orderings. 
By considering only those relational variables that occur in the OBDD representation of Fsat, our 
experiments show that we can readily construct an OBDD representation of the relevant transitivity 
constraints and thus solve the constrained satisfiability problem. 



1   Introduction 

Consider the following variant of the Boolean satisfiability problem. We are given a Boolean 
formula Fsat over a set of variables V. A subset 8 C V symbolically encodes a binary relation 
over N elements that is reflexive, symmetric, and transitive. Each of these relational variables, 
e,-j, where 1 < i < j < N, expresses whether or not the relation holds between elements i and 
j. Typically, 8 will be "sparse," containing much fewer than the N(N — l)/2 possible variables. 
Note that when e;j $. 8 for some value of i and of j, this does not imply that the relation does 
not hold between elements i and j. It simply indicates that Fsat does not directly depend on the 
relation between elements i and j. 

A transitivity constraint is a formula of the form 

e[«'i,«2] Ae[«2,is] A"- Ae[ifc-i,t-fc]     =>•     e[h,ik] (!) 

where e[,-j] equals e;j when i < j and equals e^j when i > j. Let Trans(8) denote the set of 
all transitivity constraints that can be formed from the relational variables. Our task is to find 
an assignment x: V —> {0,1} that satisfies -FSat> as weU as every constraint in Trans{8). Goel, 
et al. [GSZAS98] have shown this problem is NP-hard, even when Fsat is given as an Ordered 
Binary Decision Diagram (OBDD) [Bry86]. Normally, Boolean satisfiability is trivial given an 
OBDD representation of a formula. 

We are motivated to solve this problem as part of a tool for verifying pipelined microprocessors 
[VB99]. Our tool abstracts the operation of the datapath as a set of uninterpreted functions and 
uninterpreted predicates operating on symbolic data. We prove that a pipelined processor has 
behavior matching that of an unpipelined reference model using the symbolic flushing technique 
developed by Burch and Dill [BD94]. The major computational task is to decide the validity 
of a formula Fyer in a logic of equality with uninterpreted functions [BGV99a, BGV99b]. Our 
decision procedure transforms Fyer first by replacing all function application terms with terms 
over a set of domain variables {t;,-|l < i < N}. Similarly, all predicate applications are replaced 
by formulas over a set of newly-generated propositional variables. The result is a formula Fyer 

containing equations of the form V{ = VJ, where 1 < i < j < N. Each of these equations is 
then encoded by introducing a relational variable etij, similar to the method proposed by Goel, et 
al. [GSZAS98]. The result of the translation is a propositional formula encf(Fyer) expressing the 
verification condition over both the relational variables and the propositional variables appearing 
in -Fyer- Let Fsai denote -<encf(FyeT), the complement of the formula expressing the translated 
verification condition. To capture the transitivity of equality, e.g., that u,- = Vj A Vj = Vk =$- u» = Vk, 
we have transitivity constraints of the form e[;j] A ey^] =>• e[i,k}- Finding a satisfying assignment 
to Fsat that also satisfies the transitivity constraints will give us a counterexample to the original 
verification condition -FVer- On the other hand, if we can prove that there are no such assignments, 
then we have proved that Fyer is universally valid. 

We consider three methods to generate a Boolean formula Ftrans mat encodes the transitivity 
constraints. The direct method enumerates the set of chord-free cycles in the undirected graph 
having an edge (i,j) for each relational variable e,j € 8. This method avoids introducing addi- 
tional relational variables but can lead to a formula of exponential size. The dense method uses 
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relational variables e;j for all possible values of i and j such that 1 < i < j < N. We can then 
axiomatize transitivity by forming constraints of the form e^j] A e^j => e^.] for all distinct values 
of i, j, and k. This will yield a formula that is cubic in N. The sparse method augments S with 
additional relational variables to form a set of variables £+, such that the resulting graph is chordal 
[Rose70]. We then only require transitivity constraints of the form e^jj A ey^] => e^] such that 
e[i,j]>e[j,fc]'e[«\fc] e ^+- The sParse method is guaranteed to generate a smaller formula than the 
dense method. 

To use a conventional Boolean Satisfiability (SAT) procedure to solve our constrained satisfia- 
bility problem, we run the checker over a set of clauses encoding both Fsat and i^rans- The latest 
version of the FGRASP SAT checker [M99] was able to complete all of our benchmarks, although 
the run times increase significantly when transitivity constraints are enforced. 

When using Ordered Binary Decision Diagrams to evaluate satisfiability, we could generate 
OBDD representations of Fsat and Zorans and use me APPLY algorithm to compute an OBDD 
representation of their conjunction. From this OBDD, finding satisfying solutions would be trivial. 
We show that this approach will not be feasible in general, because the OBDD representation of 
^trans can ^e intractable. That is, for some sets of relational variables, the OBDD representation 
of the transitivity constraint formula Zorans w^ ^e °f exponential size regardless of the variable 
ordering. The NP-completeness result of Goel, et al. shows that the OBDD representation of 
i^trans may be of exponential size using the ordering previously selected for representing Fsat 
as an OBDD. This leaves open the possibility that there could be some other variable ordering 
that would yield efficient OBDD representations of both Fsat and i*trans- Our result shows that 
transitivity constraints can be intrinsically intractable to represent with OBDDs, independent of 
the structure of -Fsat. 

We present experimental results on the complexity of constructing OBDDs for the transitivity 
constraints that arise in actual microprocessor verification. Our results show that the OBDDs can 
indeed be quite large. We consider two techniques to avoid constructing the OBDD representation 
of all transitivity constraints. The first of these, proposed by Goel, et al. [GSZAS98], generates 
implicants (cubes) of Fsai and rejects those that violate the transitivity constraints. Although this 
method suffices for small benchmarks, we find that the number of implicants generated for our 
larger benchmarks grows unacceptably large. The second method determines which relational 
variables actually occur in the OBDD representation of Fsat- We can then apply one of our three 
techniques for encoding the transitivity constraints in order to generate a Boolean formula for the 
transitivity constraints over this reduced set of relational variables. The OBDD representation of 
this formula is generally tractable, even for the larger benchmarks. 

2    Benchmarks 

Our benchmarks [VB99] are based on applying our verifier to a set of high-level microprocessor 
designs. Each is based on the DLX RISC processor described by Hennessy and Patterson [HP96]: 

lxDLX-C: is a single-issue, five-stage pipeline capable of fetching up to one new instruction 
every clock cycle. It implements six instruction types: register-register, register-immediate, 



Circuit Domain 
Variables 

Propositional 
Variables 

Equations 

lxDLX-C 
lxDLX-C-t 

13 
13 

42 
42 

27 
37 

2xDLX-CA 
2xDLX-CA-t 

25 
25 

58 
58 

118 
137 

2xDLX-CC 
2xDLX-CC-t 

25 
25 

70 
70 

124 
143 

Buggy 
2xDLX-CC 

min. 
avg. 
max. 

22 
25 
25 

56 
69 
77 

89 
124 
132 

Table 1: Microprocessor Verification Benchmarks. 
to require enforcing transitivity. 

Benchmarks with suffix "t" were modified 

load, store, branch, and jump. The pipeline stages are: Fetch, Decode, Execute, Memory, 
and Write-Back. An interlock causes the instruction following a load to stall one cycle if 
it requires the loaded result. Branches and jumps are predicted as not-taken, with up to 3 
instructions squashed when there is a misprediction. This example is comparable to the DLX 
example first verified by Burch and Dill [BD94]. 

2xDLX-CA: has a complete first pipeline, capable of executing the six instruction types, and 
a second pipeline capable of executing arithmetic instructions. Between 0 and 2 new 
instructions are issued on each cycle, depending on their types and source registers, as well as 
the types and destination registers of the preceding instructions. This example is comparable 
to one verified by Burch [Bur96]. 

2xDLX-CC: has two complete pipelines, i.e., each can execute any of the six instruction types. 
There are four load interlocks—between a load in Execute in either pipeline and an instruc- 
tion in Decode in either pipeline. On each cycle, between 0 and 2 instructions can be issued. 

In all of these examples, the domain variables u4-, with 1 < i < N, in Fyer encode register 
identifiers. As described in [BGV99a, BGV99b], we can encode the symbolic terms representing 
program data and addresses as distinct values, avoiding the need to have equations among these 
variables. Equations arise in modeling the read and write operations of the register file, the bypass 
logic implementing data forwarding, the load interlocks, and the pipeline issue logic. 

Our original processor benchmarks can be verified without enforcing any transitivity con- 
straints. The unconstrained formula Fsat is unsatisfiable in every case. We are nonetheless mo- 
tivated to study the problem of constrained satisfiability for two reasons. First, other processor 
designs might rely on transitivity, e.g., due to more sophisticated issue logic. Second, to aid de- 
signers in debugging their pipelines, it is essential that we generate counterexamples that satisfy 
all transitivity constraints. Otherwise the designer will be unable to determine whether the coun- 
terexample represents a true bug or a weakness of our verifier. 



To create more challenging benchmarks, we generated variants of the circuits that require en- 
forcing transitivity in the verification. For example, the normal forwarding logic in the Execute 
stage of 1 xDLX-C must determine whether to forward the result from the Memory stage instruc- 
tion as either one or both operand(s) for the Execute stage instruction. It does this by comparing the 
two source registers ESrcl and ESrc2 of the instruction in the Execute stage to the destination 
register MDest of the instruction in the memory stage. In the modified circuit, we changed the by- 
pass condition ESrcl =MDest tobeESrcl = MDestV(ESrcl = ESrc2AESrc2=MDest). 
Given transitivity, these two expressions are equivalent. For each pipeline, we introduced four 
such modifications to the forwarding logic, with different combinations of source and destination 
registers. These modified circuits are named 1 xDLX-C-t, 2xDLX-CA-t, and 2xDLX-CC-t. 

To study the problem of counterexample generation for buggy circuits, we generated 105 vari- 
ants of 2xDLX-CC, each containing a small modification to the control logic. Of these, 5 were 
found to be functionally correct, e.g., because the modification caused the processor to stall un- 
necessarily, yielding a total of 100 benchmark circuits for counterexample generation. 

Table 1 gives some statistics for the benchmarks. The number of domain variables N ranges 
between 13 and 25, while the number of equations ranges between 27 and 143. The verification 
condition formulas Fyer also contain between 42 and 77 propositional variables expressing the 
operation of the control logic. These variables plus the relational variables comprise the set of 
variables V in the propositional formula Fsat. The circuits with modifications that require en- 
forcing transitivity yield formulas containing up to 19 additional equations. The final three lines 
summarize the complexity of the 100 buggy variants of 2xDLX-CC. We apply a number of sim- 
plifications during the generation of formula Fsat, and hence small changes in the circuit can yield 
significant variations in the formula complexity. 

3    Graph Formulation 

Our definition of Trans(£) (Equation 1) places no restrictions on the length or form of the tran- 
sitivity constraints, and hence there can be an infinite number. We show that we can construct a 
graph representation of the relational variables and identify a reduced set of transitivity constraints 
that, when satisfied, guarantees that all possible transitivity constraints are satisfied. By introduc- 
ing more relational variables, we can alter this graph structure, further reducing the number of 
transitivity constraints that must be considered. 

For variable set £, define the undirected graph G(£) as containing a vertex i for 1 < i < N, and 
an edge (i,j) for each variable ehj £ £. For an assignment x of Boolean values to the relational 
variables, define the labeled graph G(£, x)t0 be the graph G(£) with each edge (i,j) labeled as a 
1-edge when x(ei,j) = 1> ar>d as a 0-edge when x(ei,j) = 0. 

A path is a sequence of vertices [ii,«2, ■ • ■ ,u] having edges between successive elements. 
That is, each element ip of the sequence (1 < p < k) denotes a vertex: 1 < ip < N, while each 
successive pair of elements ip and ip+i (1 < p < k) forms an edge (ip, ip+1) We consider each edge 
(ip, ip+i) for 1 < p < k to also be part of the path. A cycle is a path of the form [ii,i2, • • •, U-, «i]. 



Proposition 1 An assignment x to the variables in £ violates transitivity if and only if some cycle 
in G(£, x) contains exactly one 0-edge. 

Proof: If. Suppose there is such a cycle. Letting ix be the vertex at one end of the 0-edge, we 
can trace around the cycle, giving a sequence of vertices [i\, i2, ■. ., ik], where ik is the vertex at 
the other end of the 0-edge. The assignment has x(e[ij,iJ+i]) = lforl < j < k, and x(e[n,ik] = 0)> 
and hence it violates Equation 1. 

Only If. Suppose the assignment violates a transitivity constraint given by Equation 1. Then, 
we construct a cycle [z'i, z2,..., ik, «i] of vertices such that only edge (ik, ?i) is a 0-edge. □ 

A path [ii, i2,..., ik] is said to be acyclic when ip ^ iq for all 1 < p < q < k. A cycle 
[z'i, z2,.. •, ik, i\\ is said to be simple when its prefix [zi, z2,..., ik] is acyclic. 

Proposition 2 An assignment x to the variables in £ violates transitivity if and only if some simple 
cycle in G(€, x) contains exactly one 0-edge. 

Proof: The "if" portion of this proof is covered by Proposition 1. The "only if" portion is 
proved by induction on the number of variables in the antecedent of the transitivity constraint 
(Equation 1.) That is, assume a transitivity constraint containing k variables in the antecedent is 
violated and that all other violated constraints have at least k variables in their antecedents. If there 
are no values p and q such that 1 < p < q < k mdip = iq, then the cycle [ii,i2, ■ ■ -ik,i\] is simple. 
If such values p and q exist, then we can form a transitivity constraint: 

e[iui2} A ■ ■ ■/\ e[ip_uip] f\ e[iqtiq+l] f\ ■ ■ ■ A e[ik_uik]    =4>    e\ «i,«*j 

This transitivity constraint contains fewer than k variables in the antecedent, but it is also violated. 
This contradicts our assumption that there is no violated transitivity constraint with fewer than k 
variables in the antecedent. □ 

Define a chord of a simple cycle to be an edge that connects two vertices that are not adjacent 
in the cycle. More precisely, for a simple cycle [i1? i2,..., ik, ii], a chord is an edge (ip, iq) in 
G(S) such that 1 < p < q < k, with p + 1 < q, and either p ^ 1 or q ^ k. A cycle is said to be 
chord-free if it is simple and has no chords. 

Proposition 3 An assignment x to the variables in S violates transitivity if and only if some chord- 
free cycle in G(£, x) contains exactly one 0-edge. 

Proof: The "if" portion of this proof is covered by Proposition 1. The "only if" portion is 
proved by induction on the number of variables in the antecedent of the transitivity constraint 
(Equation 1.) Assume a transitivity constraint with k variables is violated, and that no transitivity 
constraint with fewer variables in the antecedent is violated. If there are no values of p and q such 
that there is a variable e[jpij9] € £ with p +1 < q and either p^lorq^k, then the corresponding 
cycle is chord-free. If such values of p and q exist, then consider the two cases illustrated in Figure 
1, where 0-edges are shown as dashed lines, 1-edges are shown as solid lines, and the wavy lines 



O-Edge 1 -Edge 

Figure 1: Case Analysis for Proposition 3. O-Edges are shown as dashed lines. When a cycle rep- 
resenting a transitivity violation contains a chord, we can find a smaller cycle that also represents 
a transitivity violation. 

represent sequences of 1-edges. Case 1: Edge (ip,iq) is a 0-edge (shown on the left). Then the 
transitivity constraint: 

e[,-p,,-p+1] A--- Ae[lr,,g e[ip,iq] 

is violated and has fewer than k variables in its antecedent. Case 2: Edge (ip, iq) is a 1-edge (shown 
on the right). Then the transitivity constraint: 

e[iui2] A • • • A e[lp_uip] A e[ipjq] A e[t-9jl-,+ 1] A • • • A e^,,,,-^    =>    e[iuik] 

is violated and has fewer than k variables. Both cases contradict our assumption that there is no 
violated transitivity constraint with fewer than k variables in the antecedent. □ 

Each length k cycle [ii: i2:..., u-, «i] yields k constraints, given by the following clauses. Each 
clause is derived by expressing Equation 1 as a disjunction. 

ne[u,t2] V ■■■V-e[iM,it]Ve[lti,-] 
nek,«-3] V • • • V ~-e[lk_uik] V -e^j V e[t-lit-2] 

ne[«*,.-i] v ~^el*i,i2] V • • • V -e^^j V e[tk_ulk] 

(2) 

For a set of relational variables £, we define Ftrans^) t0 be the conjunction of all transitivity 
constraints for all chord-free cycles in the graph G(S). 

Theorem 1 An assignment to the relational variables £ will satisfy all of the transitivity con- 
straints given by Equation 1 if and only if it satisfies F(rans(£). 

This theorem follows directly from Proposition 3 and the encoding given by Equation 2. 

3.1   Enumerating Chord-Free Cycles 

To enumerate the chord-free cycles of a graph, we exploit the following properties. An acyclic path 
[*i j *2> • • •) h] is said to have a chord when there is an edge (ip, iq) in G(£) such that 1 < p < q < k 



with p + 1 < q, and either p ^ 1 or q ^ k. We classify a chord-free path as terminal when (ik, «i) 
is in G(£), and as extensible otherwise. 

Proposition 4 Apaf/z [ii, i2, ■ ■ ■ ,ik] is chord-free and terminal if and only if the cycle [i1? i2, ■ ■ ., ü, ii] 
w chord-free. 

This follows by noting that the conditions imposed on a chord-free path are identical to those for a 
chord-free cycle, except that the latter includes a closing edge {ik, H)- 

A proper prefix of path [z'i, i2,..., ü] is a path [ii,i2, ■ ■ •, «j] such that 1 < j < k. 

Proposition 5 Every proper prefix of a chord-free path is chord-free and extensible. 

Clearly, any prefix of a chord-free path is also chord-free. If some prefix [ix, «2, • • •, ij] with 
j < k were terminal, then any attempt to add the edge (ij,ij+i) would yield either a simple cycle 
(when ij+1 = ix), some other cycle (when ij+1 = ip for some 1 < p < j), or a path having (iu ij) 
as a chord. 

Given these properties, we can enumerate the set of all chord-free paths by breadth first expan- 
sion. As we enumerate these paths, we also generate C, the set of all chord-free cycles. Define Pk 

to be the set of all extensible, chord-free paths having k vertices, for 1 < k < N. 

Initially we have Pi = {[i]|l < i < n}, and C = 0. Given set Pk, we generate set Pk+1 and 
add some cycles of length k + ltoC. For each path [iu i2,..., ik] € Pk, we consider the path 
[«i,«2, • • • ,ik,ik+i] for each edge (4,ü+i) in G(£). When ü+i = iP for some 1 < p < k, we 
classify the path as cyclic. When there is an edge (ik+i,ip) in G{£) for some 1 < p < k, we 
classify the path as having a chord. When there is an edge (ik+i,ii) in G(£), we add the cycle 
[ii, i2, ■ ■ ■, ik, ik+i,h] to C. Otherwise, we add the path to Pk+i. 

After generating all of these paths, we can use the set C to generate the set of all chord-free 
cycles. For each terminal, chord-free cycle having k vertices, there will be 2k members of C— 
each of the k edges of the cycle can serve as the closing edge, and a cycle can traverse the closing 
edge in either direction. To generate the set of clauses given by Equation 2, we simply need to 
choose one element of C for each closing edge, e.g., by considering only cycles [ii,..., ik, h] for 
which ii < ik. 

As Figure 2 indicates, there can be an exponential number of chord-free cycles in a graph. 
In particular, this figure illustrates a family of graphs with 3n + 1 vertices. Consider the cycles 
passing through the n diamond-shaped faces as well as the edge along the bottom. For each 
diamond-shaped face Ft-, a cycle can pass through either the upper vertex or the lower vertex. Thus 
there are T such cycles. In addition, the edges forming the perimeter of each face F, create a 
chord-free cycle, giving a total of 2n + n chord-free cycles. 

The columns labeled "Direct" in Table 2 show results for enumerating the chord-free cycles for 
our benchmarks. For each correct microprocessor, we have two graphs: one for which transitivity 
constraints played no role in the verification, and one (indicated with a "t" at the end of the name) 
modified to require enforcing transitivity constraints. We summarize the results for the transitivity 



Figure 2: Class of Graphs with Many Chord-Free Cycles. For a graph with n diamond-shaped 
faces, there are 2n + n chord-free cycles. 

Circuit Direct Dense Sparse 
Edges Cycles Clauses Edges Cycles Clauses Edges Cycles Clauses 

lxDLX-C 27 90 360 78 286 858 33 40 120 
lxDLX-C-t 37 95 348 78 286 858 42 68 204 
2xDLX-CA 118 2,393 9,572 300 2,300 6,900 172 697 2,091 
2xDLX-CA-t 137 1,974 7,944 300 2,300 6,900 178 695 2,085 
2xDLX-CC 124 2,567 10,268 300 2,300 6,900 182 746 2,238 
2xDLX-CC-t 143 2,136 8,364 300 2,300 6,900 193 858 2,574 
Full min. 89 1,446 6,360 231 1,540 4,620 132 430 1,290 
Buggy avg. 124 2,562 10,270 300 2,300 6,900 182 750 2,244 
2XDLX-CC max. 132 3,216 12,864 299 2,292 6,877 196 885 2,655 
M4 24 24 192 120 560 1,680 42 44 132 
M5 40 229 3,056 300 2,300 6,900 77 98 294 
M6 60 3,436 61,528 630 7,140 21,420 131 208 624 
M7 84 65,772 1,472,184 1,176 18,424 55,272 206 408 1,224 
M8 112 1,743,247 48,559,844 2,016 41,664 124,992 294 662 1,986 

Table 2: Cycles in Original and Augmented Benchmark Graphs. Results are given for the three 
different methods of encoding transitivity constraints. 

constraints in our 100 buggy variants of 2xDLX-CC in terms of the minimum, the average, and 
the maximum of each measurement. We also show results for five synthetic benchmarks consisting 
of n x n planar meshes Mn, with n ranging from 4 to 8, where the mesh for n = 6 is illustrated 
in Figure 3. For all of the circuit benchmarks, the number of cycles, although large, appears to be 
manageable. Moreover, the cycles have at most 4 edges. The synthetic benchmarks, on the other 
hand, demonstrate the exponential growth predicted as worst case behavior. The number of cycles 
grows quickly as the meshes grow larger. Furthermore, the cycles can be much longer, causing the 
number of clauses to grow even more rapidly. 



3.2   Adding More Relational Variables 

Enumerating the transitivity constraints based on the variables in £ runs the risk of generating a 
Boolean formula of exponential size. We can guarantee polynomial growth by considering a larger 
set of relational variables. In general, let £' be some set of relational variables such that £ C £', 
and let Ptrans(£') be the transitivity constraint formula generated by enumerating the chord-free 
cycles in the graph G(£'). 

Theorem 2 If £ is the set of relational variables in Fsat and £ C £', then the formula Fsat A 
Ffrans{£) is satisfiable if and only if Fsaf A Ftmns(£') is satisfiable. 

We introduce a series of lemmas to prove this theorem. For a propositional formula F over a 
set of variables A and an assignment x- A —> {0,1}, define the valuation of F under x, denoted 
[F] , to be the result of evaluating formula F according to assignment x- We first prove that we 
can extend any assignment over a set of relational variables to one over a superset of these variables 
yielding identical valuations for both transistivity constraint formulas. 

Lemma 1 For any sets of relational variables £\ and £2 such that £\ C £2, and for any assignment 
Xi- £\ —>■ {0,1}, such that [Ffrans(£i)] = 1> there is an assignment X2- £2 —> {0,1} such that 
[Ftrans(^)]X2 = 1 

Proof: We consider the case where £2 = £\ U {et-j}. The general statement of the proposition 
then holds by induction on |£2| — \£\ |- 

Define assignment X2 to be: 

X2(e) 
' Xi(e),   e ^ ehJ 

1, Graph G{£x,x) has a path of 1 -edges from node i to node j. 
0, otherwise 

We consider two cases: 

1. If X2(ei,j) = 0, then any cycle in G(£2,X2) through et-j must contain a 0-edge other than 
e;j. Hence adding this edge does not introduce any transitivity violations. 

2. If X2(e4j) = 1, then there must be some path Pi of 1-edges between nodes i and j in 
G(£i,xi)- In order for the introduction of 1-edge e8J- to create a transitivity violation, there 
must also be some path P2 between nodes i and j in G(£i,xi) containing exactly one 0- 
edge. But then we could concatenate paths Pi and P2 to form a cycle in G(£i, xi) containing 
exactly one 0-edge, implying that [Ptrans(£i)]x 

= 0- We conclude therefore that adding 
1-edge et-j does not introduce any transitivity violations. 

D 

Lemma 2 For £x C £2 and for any assignment X2' £2 —>■ {0,1}, such that [Ftrans{^2)]X2 = 1, we 
also have [Ftrans{£i)}X2 = 1 



Proof: We note that any cycle in G{£i,xi) must be present in G'(£2,X2) and have the same 
edge labeling. Thus, if G(£2,X2) has no cycle with a single 0-edge, then neither does G(£i,X2)- 
a 

We now return to the proof of Theorem 2. 

Proof: Suppose that Fsat A ^trans(^) is satisfiable, i.e., there is some assignment x such 
that [Fsai], = [^trans(^)] = !• Then by Lemma 1 we can find an assignment x' such tnat 

[Firans(£')] , = 1. Furthermore, since the construction of x' by Lemma 1 preserves the values 
assigned to all variables in £, and these are the only relational variables occurring in Fsai, we can 
conclude that [Fsat] , = 1. Therefore Fsat A Ftvms(£') is satisfiable. 

Suppose on the other hand that Fsat A Ftram(£') is satisfiable, i.e., there is some assignment 
x' such that [Fsat] , = [^trans(^')]X' = 1- Then by Lemma 2 we also have [-ftrans(^)]x' = 1> an& 
hence Fsat A -ftrans(^) *s satisfiable. □ 

Our goal then is to add as few relational variables as possible in order to reduce the size of 
the transitivity formula. We will continue to use our path enumeration algorithm to generate the 
transitivity formula. 

3.3 Dense Enumeration 

For the dense enumeration method, let £^ denote the set of variables e,-j for all values of i and 
j such that 1 < i < j < N. Graph G(£N) is a complete, undirected graph. In this graph, 
any cycle of length greater than three must have a chord. Hence our algorithm will enumerate 
transitivity constraints of the form e[,-j] A eytk] =^ e[;,*-], f°r a'l distinct values of i, j, and k. 
The graph has N(N — 1) edges and N(N - 1)(N - 2)/6 chord-free cycles, yielding a total of 
N(N - 1)(N - 2)/2 = 0(N3) transitivity constraints. 

The columns labeled "Dense" in Table 2 show the complexity of this method for the benchmark 
circuits. For the smaller graphs 1 xDLX-C, 1 xDLX-C-t, M4 and M5, this method yields more 
clauses than direct enumeration of the cycles in the original graph. For the larger graphs, however, 
it yields fewer clauses. The advantage of the dense method is most evident for the mesh graphs, 
where the cubic complexity is far superior to exponential. 

3.4 Sparse Enumeration 

We can improve on both of these methods by exploiting the sparse structure of G(£). Like the 
dense method, we want to introduce additional relational variables to give a set of variables £+ 

such that the resulting graph G(£+) becomes chordal [Rose70]. That is, the graph has the property 
that every cycle of length greater than three has a chord. 

Chordal graphs have been studied extensively in the context of sparse Gaussian elimination. In 
fact, the problem of finding a minimum set of additional variables to add to our set is identical to 
the problem of finding an elimination ordering for Gaussian elimination that minimizes the amount 
of fill-in. Although this problem is NP-complete [Yan81], there are good heuristic solutions. In 
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Circuit Qat 
Satisfiable? Sees. 

Qrans u Qat 
Satisfiable?     Sees. 

Ratio 

lxDLX-C 
lxDLX-C-t 

N 
Y 

3 
1 

N 
N 

4 
9 

1.4 
NA. 

2xDLX-CA 
2xDLX-CA-t 

N 
Y 

176 
3 

N 
N 

1,275 
896 

7.2 
N.A. 

2xDLX-CC 
2xDLX-CC-t 

N 
Y 

5,035 
4 

N 
N 

9,932 
15,003 

2.0 
N.A. 

Full 
Buggy 
2xDLX-CC 

min. 
avg. 
max. 

Y 
Y 
Y 

1 
125 

2,186 

Y 
Y 
Y 

1 
1,517 

43,817 

0.2 
2.3 

69.4 

Table 3: Performance of FGRASP on Benchmark Circuits. Results are given both without and 
with transitivity constraints. 

particular, our implementation proceeds as a series of elimination steps. On each step, we remove 
some vertex i from the graph. For every pair of distinct, uneliminated vertices j and k such that 
the graph contains edges (i,j) and (i, k), we add an edge (j, k) if it does not already exist. The 
original graph plus all of the added edges then forms a chordal graph. To choose which vertex to 
eliminate on a given step, our implementation uses the simple heuristic of choosing the vertex with 
minimum degree. If more than one vertex has minimum degree, we choose one that minimizes the 
number of new edges added. 

The columns in Table 2 labeled "Sparse" show the effect of making the benchmark graphs 
chordal by this method. Observe that this method gives superior results to either of the other two 
methods. In our implementation we have therefore used the sparse method to generate all of the 
transitivity constraint formulas. 

4   SAT-Based Decision Procedures 

Most Boolean satisfiability (SAT) checkers take as input a formula expressed in clausal form. 
Each clause is a set of literals, where a literal is either a variable or its complement. A clause 
denotes the disjunction of its literals. The task of the checker is to either find an assignment to the 
variables that satisfies all of the clauses or to determine that no such assignment exists. We can 
solve the constrained satisfiability problem using a conventional SAT checker by generating a set 
of clauses Ctrans representing i*trans(£+) anc* a set of clauses Csat representing the formula Fsat. 
We then run the checker on the combined clause set Csat U Qrans t0 ^n<^ satisfying solutions to 

^sat A ^trans(£+)- 

In experimenting with a number of Boolean satisfiability checkers, we have found that FGRASP 
[MS99] has the best overall performance. The most recent version can be directed to periodically 
restart the search using a randomly-generated variable assignment [M99]. This is the first SAT 
checker we have tested that can complete all of our benchmarks. All of our experiments were 
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conducted on a 336 MHz Sun UltraSPARC II with 1.2GB of primary memory. 

As indicated by Table 3, we ran FGRASP on clause sets Csat and Qrans u Qat> i-e-» both with- 
out and with transitivity constraints. For benchmarks 1 xDLX-C, 2xDLX-CA, and 2xDLX-CC, 
the formula Fsat is unsatisfiable. As can be seen, including transitivity constraints increases the 
run time significantly. For benchmarks 1 xDLX-C-t, 2xDLX-CA-t, and 2xDLX-CC-t, the for- 
mula Fsai is satisfiable, but only because transitivity is not enforced. When we add the clauses 
for -^trans' me formula becomes unsatisfiable. For the buggy circuits, the run times for Csat range 
from under 1 second to over 36 minutes. The run times for Qrans U Qat range from less than 
one second to over 12 hours. In some cases, adding transitivity constraints actually decreased the 
CPU time (by as much as a factor of 5), but in most cases the CPU time increased (by as much as a 
factor of 69). On average (using the geometric mean) adding transitivity constraints increased the 
CPU time by a factor of 2.3. We therefore conclude that satisfiability checking with transitivity 
constraints is more difficult than conventional satisfiability checking, but the added complexity is 
not overwhelming. 

5    OBDD-Based Decision Procedures 

A simple-minded approach to solving satisfiability with transitivity constraints using OBDDs 
would be to generate separate OBDD representations of -F^ans ar>d ^sat- We could then use 
the APPLY operation to generate an OBDD for .Ftraris A Fsai, and then either find a satisfying 
assignment or determine that the function is unsatisfiable. We show that for some sets of relational 
variables £, the OBDD representation of ^trans^) can be too large to represent and manipulate. In 
our experiments, we use the CUDD OBDD package with dynamic variable reordering by sifting. 

5.1   Lower Bound on the OBDD Representation of ^trans(^) 

We prove that for some sets £, the OBDD representation of Ftrans(£) may be of exponential 
size for all possible variable orderings. As mentioned earlier, the NP-completeness result proved 
by Goel, et al. [GSZAS98] has implications for the complexity of representing ^trans(^) as an 

OBDD. They showed that given an OBDD Gsat representing formula Fsai, the task of finding 
a satisfying assignment of Fsat that also satisfies the transitivity constraints in Trans{£) is NP- 
complete in the size of Gsat. By this, assuming P ^ NP, we can infer that the OBDD representa- 
tion of -Ftrans(^) may be of exponential size when using the same variable ordering as is used in 
Gsai. Our result extends this lower bound to arbitrary variable orderings and is independent of the 
P vs. NP problem. 

Let Mn denote a planar mesh consisting of a square array of n x n vertices. For example, 
Figure 3 shows the graph for n — 6. Being a planar graph, the edges partition the plane into faces. 
As shown in Figure 3 we label these Fij for 1 < i,j < n — 1. There are a total of (n — l)2 

such faces. One can see that the set of edges forming the border of each face forms a chord-free 
cycle of Mn. As shown in Table 2, many other cycles are also chord-free, e.g., the perimeter of 
any rectangular region having height and width greater than 1, but we will consider only the cycles 
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Figure 3: Mesh Graph M6. 

corresponding to single faces. 

Define SnXn to be a set of relational variables corresponding to the edges in Mn. ^trans(^nxn) 
is then an encoding of the transitivity constraints for these variables. 

Theorem 3 Any OBDD representation of Ftrans(SnXn) must have J7(2n/4) vertices. 

To prove this theorem, consider any ordering of the variables representing the edges in Mn. 
Let A denote those in the first half of the ordering, and B denote those in the second half. We can 
then classify each face according to the four edges forming its border: 

A: All are in A. 

B: All are in B. 

C: Some are in A, while others are in B. These are called "split" faces. 

Observe that we cannot have a type A face adjacent to a type B face, since their shared edge cannot 
be in both A and B. Therefore there must be split faces separating any region of type A faces from 
any region of type B faces. 

For example, Figure 4 shows three possible partitionings of the edges of M6 and the resulting 
classification of the faces. If we let a, b, and c denote the number of faces of each respective type, 
we see that we always have c > 5 = n — 1. In particular, a minimum value for c is achieved 
when the partitioning of the edges corresponds to a partitioning of the graph into a region of type 
A faces and a region of type B faces, each having nearly equal size, with the split faces forming 
the boundary between the two regions. 
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a= ll,b = 9,c = 5 a= io, ft =10, c = 5 ö=10, b = 5, c =10 

Figure 4: Partitioning Edges into Sets A (solid) and B (dashed). Each face can then be classified 
as type A (all solid), B (all dashed), or C (mixed). 

Lemma 3 For any partitioning of the edges of mesh graph Mn into equally-sized sets A and B, 
there must he at least (n — 3)/2 split faces. 

Note that this lower bound is somewhat weak—it seems clear that we must have c > n — 1. 
However, this weaker bound will suffice to prove an exponential lower bound on the OBDD size. 

Proof: Our proof is an adaptation of a proof by Leighton [Lei92, Theorem 1.21] that Mn has 
a bisection bandwidth of at least n. That is, one would have to remove at least n edges to split the 
graph into two parts of equal size. 

Observe that Mn has n2 vertices and 2n(n — 1) edges. These edges are split so that n(n — 1) 
are in A and n(n — 1) are in B. 

Let M® denote the planar dual of Mn. That is, it contains a vertex Uij for each face F,-j of 
Mn, and edges between pairs of vertices such that the corresponding faces in Mn have a common 
edge. In fact, one can readily see that this graph is isomorphic to Mn-i- 

Partition the vertices of Mf? into sets Ua,Ub, and Uc according to the types of their correspond- 
ing faces. Let a, b, and c denote the number of elements in each of these sets. Each face of Mn has 
four bordering edges, and each edge is the border of at most two faces. Thus, as an upper bound 
on a, we must have Aa < 2n(n - 1), giving a < n(n - l)/2, and similarly for b. In addition, since 
a face of type A cannot be adjacent in Mn to one of type B, no vertex in Ua can be adjacent in M,f 
to one in [/&. 

Consider the complete, directed, bipartite graph having as edges the set (Ua x Ub) U (f/f, x Ua), 
i.e., a total of 2ab edges. Given the bounds: a + b = (n — l)2 — c, a < n(n — l)/2, and 
b < n(n — l)/2, the minimum value of 2ab is achieved when either a = n(n — l)/2 and b — 
(n — l)2 — (n — 1)11/2 — c = (n — l)(n — 2)/2 — c, or vice-versa, giving a lower bound: 

2ab   >   2[n{n - l)/2] • [(n - l)(n - 2)/2 - c] 
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=   n(n-l)2(n-2)/2 - cn(n-l) 

We can embed this bipartite graph in M® by forming a path from vertex uitj to vertex «,-/j/, 
where either Uij e Ua and itj/j/ G [/&, or vice-versa. By convention, we will use the path that first 
follows vertical edges to u,-;j and then follows horizontal edges to u^jt. We must have at least 
one vertex in Uc along each such path, and therefore removing the vertices in Uc would cut all 2ab 
paths. 

For each vertex itjj G Uc, we can bound the total number of paths passing through it by 
separately considering paths that enter from the bottom, the top, the left, and the right. For those 
entering from the bottom, there are at most n — i — 1 source vertices and i(n — 1) destination 
vertices, giving at most i(n — i — l)(n — 1) paths. This quantity is maximized for i = (n — l)/2, 
giving an upper bound of (n — l)3/4. A similar argument shows that there are at most (n — l)3/4 
paths entering from the top of any vertex. For the paths entering from the left, there are at most 
(j — l)(n — 1) source vertices and (n — j) destinations, giving at most (j — l)(n — j)(n — 1) 
paths. This quantity is maximized when j = (n — l)/2, giving an upper bound of (n — l)3/4. This 
bound also holds for those paths entering from the right. Thus, removing a single vertex would cut 
at most (n — l)3 paths. 

Combining the lower bound on the number of paths 2ab, the upper bound on the number of 
paths cut by removing a single vertex, and the fact that we are removing c vertices, we have: 

c(n-l)3    >    n(n- l)2(n - 2)/2 - cn(n - 1) 

c(n-l)s + cn   >   n(n-l)(n-2)/2 

c(n2-n + l)    >   n(n-l)(ra-2)/2 

We can rewrite n(n — l)(n — 2) as (n2 — n + l)(n — 3) + n2 — 2n + 3. Observing that n2 — 2n + 3 > 0 
for all values of n, we have: 

c(n2-n + l)    >    (n2-n + l)(n-3)/2 + (n2-2n + 3)/2 

>    (n2-n + l)(n-3)/2 

c   >    (n-3)/2 

D 

A set of faces is said to be edge independent when no two members of the set share an edge. 

Lemma 4 For any partitioning of the edges of mesh graph Mn into equally-sized sets A and B, 
there must be an edge-independent set of split faces containing at least (n — 3)/4 elements. 

Proof: Classify the parity of face F;j as "even" when i + j is even, and as "odd" otherwise. 
Observe that no two faces of the same parity can have a common edge. Divide the set of split 
faces into two subsets: those with even parity and those with odd. Both of these subsets are edge 
independent, and one of them must have at least 1/2 of the elements of the set of all split faces. □ 

We can now complete the proof of Theorem 3 Proof: Suppose there is an edge-independent set 
of k split faces. For each split face, choose one edge in A and one edge in B bordering that face. 
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For each value y e {0, l}k, define assignment a$ (respectively, ß$), to the variables representing 
edges in A (resp., B) as follows. For an edge e that is not part of any of the k split faces, define 
ocg{e) — 0 (resp., ßg(e) = 0). For an edge e that is part of a split face, but it was not one of the ones 
chosen specially, let a$ — 1 (resp., ß$(e) = 1). For an edge e that is the chosen variable in face i, 
let a$(e) = yt- (resp., ß$(e) = yi). This will give us an assignment a$ • ß$ to all of the variables 
that evaluates to 1. That is, for each independent, split face F{, we will have two 1-edges when 
yi — 0 and four 1-edges when y,■. = 1. All other cycles in the graph will have at least two 0-edges. 

On the other hand, for any y, z 6 {0,1}A' such that y ^ z the assignment a$ ■ ß? will cause an 
evaluation to 0, because for any face i where y; ^ Z{, all but one edge will be assigned value 1. 
Thus, the set of assignments {a#\y G {0,1}*"} forms an OBDD fooling set, as defined in [Bry91], 
implying that the OBDD must have at least 2k > 2{n~^l4 = Q(2"/4) vertices. D 

We have seen that adding relational variables can reduce the number of cycles and therefore 
simplify the transitivity constraint formula. This raises the question of how adding relational vari- 
ables affects the BDD representation of the transitivity constraints. Unfortunately, the exponential 
lower bound still holds. 

Corollary 1 For any set of relational variables £ such that £nXn C £, any OBDD representation 
of Ffrans(£) must contain fl(2n^8) vertices. 

The extra edges in £ introduce complications, because they create cycles containing edges 
from different faces. As a result, our lower bound is weaker. 

Define a set of faces as vertex independent if no two members share a vertex. 

Lemma 5 For any partitioning of the edges of mesh graph Mn into equal-sized sets A and B, 
there must he a vertex-independent set of split faces containing at least (n — 3)/8 elements. 

Proof: Partition the set of split faces into four sets: EE, EO, OE, and OO, where face FtJ- is 
assigned to a set according to the values of i and j: 

EE: Both i and j are even. 

EO: i is even and j is odd. 

OE: i is odd and j is even. 

OO: Both i and j are odd. 

Each of these sets is vertex independent. At least one of the sets must contain at least 1/4 of 
the elements. Since there are at least (n — 3)/2 split faces, one of the sets must contain at least 
(n — 3)/8 vertex-independent split faces. □ 

We can now prove Corollary 1. 

Proof: For any ordering of the variables in £, partition them into two sets A and B such 
that those in A come before those in B, and such the number of variables that are in £nXn are 
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equally split between A and B. Suppose there is a vertex-independent set of k split faces. For 
each value y € {0, l}fc, we define assignments a$ to the variables in A and ßg to the variables 
in B. These assignments are defined as they are in the proof of Theorem 3 with the addition that 
each variable e,-j in £ — £nXn is assigned value 0. Consider the set of assignments a$ • ßg for 
all values y, z € {0, l}k. The only cycles in G(£, a$ • ßg) that can have less than two 0-edges 
will be those corresponding to the perimeters of split faces. As in the proof of Theorem 3, the set 
iav W £ {Or l}*} forms an OBDD fooling set, as defined in [Bry91], implying that the OBDD 
must have at least 2k > 2^n'^'s = 0(2n/8) vertices. D 

Our lower bounds are fairly weak, but this is more a reflection of the difficulty of proving 
lower bounds. We have found in practice that the OBDD representations of the transitivity con- 
straint functions arising from benchmarks tend to be large relative to those encountered during the 
evaluation of Fsai. For example, although the OBDD representation of i7trans(^+) f°r benchmark 
1 x DLX-C-t is just 2,692 nodes (a function over 42 variables), we have been unable to construct the 
OBDD representations of this function for either 2xDLX-CA-t (178 variables) or 2xDLX-CC-t 
(193 variables) despite running for over 24 hours. 

5.2 Enumerating and Eliminating Violations 

Goel, et al. [GSZAS98] proposed a method that generates implicants (cubes) of the function Fsat 
from its OBDD representation. Each implicant is examined and discarded if it violates a transitivity 
constraint. In our experiments, we have found this approach works well for the normal, correctly- 
designed pipelines (i.e., circuits 1 x DLX-C, 2 x DLX-CA, and 2 x DLX-CC) since the formula Fsat 
is unsatisfiable and hence has no implicants. For all 100 of our buggy circuits, the first implicant 
generated contained no transitivity violation and hence was a valid counterexample. 

For circuits that do require enforcing transitivity constraints, we have found this approach im- 
practical. For example, in verifying 1 xDLX-C-t by this means, we generated 253,216 implicants, 
requiring a total of 35 seconds of CPU time (vs. 0.2 seconds for 1 xDLX-C). For benchmarks 
2xDLX-CA-t and 2xDLX-CC-t, our program ran for over 24 hours without having generated all 
of the implicants. By contrast, circuits 2 x DLX-CA and 2 x DLX-CC can be verified in 11 and 29 
seconds, respectively. Our implementation could be improved by making sure that we generate 
only implicants that are irredundant and prime. In general, however, we believe that a verifier that 
generates individual implicants will not be very robust. The complex control logic for a pipeline 
can lead to formulas Fsat containing very large numbers of implicants, even when transitivity plays 
only a minor role in the correctness of the design. 

5.3 Enforcing a Reduced Set of Transitivity Constraints 

One advantage of OBDDs over other representations of Boolean functions is that we can readily 
determine the true support of the function, i.e., the set of variables on which the function depends. 
This leads to a strategy of computing an OBDD representation of Fsat and intersecting its support 
with £ to give a set £ of relational variables that could potentially lead to transitivity violations. 
We then augment these variables to make the graph chordal, yielding a set of variables £+ and 
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Circuit Verts. Direct Dense Sparse 
Edges Cycles Clauses Edges Cycles Clauses Edges Cycles Clauses 

lxDLX-C-t 9 18 14 45 36 84 252 20 19 57 
2xDLX-CA-t 17 44 101 395 136 680 2,040 49 57 171 
2xDLX-CC-t 17 46 108 417 136 680 2,040 52 66 198 
Reduced min. 3 2 0 0 3 1 3 2 0 0 
Buggy avg. 12 17 19 75 73 303 910 21 14 42 
2xDLX-CC max. 19 52 378 1,512 171 969 2,907 68 140 420 

Table 4: Graphs for Reduced Transitivity Constraints. Results are given for the three different 
methods of encoding transitivity constraints based on the variables in the true support of Fsa^. 

Circuit 

^sat 

OBDD Nodes 

^trans(£+)    Fsat A Ftram(£+) 

CPU 

Sees. 

lxDLX-C 
lxDLX-C-t 

1 
530 

1                               1 
344                                1 

0.2 
2 

2xDLX-CA 
2xDLX-CA-t 

1 
22,491 

1                                 1 
10,656                               1 

11 
109 

2xDLX-CC 
2xDLX-CC-t 

1 
17,079 

1                               1 
7,168                               1 

29 
441 

Reduced 
Buggy 
2xDLX-CC 

min. 
avg. 
max. 

20 
3,173 

15,784 

1                             20 
1,483                      25,057 

93,937                    438,870 

7 
107 

2,466 

Table 5: OBDD-based Verification. Transitivity constraints were generated for a reduced set of 
variables £. 

generate an OBDD representation of ^trans(^+)-  We compute Fsaj A -Ftrans(£+) an<^> if it is 
satisfiable, generate a counterexample. 

Table 4 shows the complexity of the graphs generated by this method for our benchmark cir- 
cuits. Comparing these with the full graphs shown in Table 2, we see that we typically reduce the 
number of relational vertices (i.e., edges) by a factor of 3 for the benchmarks modified to require 
transitivity and by an even greater factor for the buggy circuit benchmarks. The resulting graphs 
are also very sparse. For example, we can see that both the direct and sparse methods of encoding 
transitivity constraints greatly outperform the dense method. 

Table 5 shows the complexity of applying the OBDD-based method to all of our bench- 
marks. The original circuits lxDLX-C, 2xDLX-CA, and 2xDLX-CC yielded formulas Fsai 
that were unsatisfiable, and hence no transitivity constraints were required. The 3 modified cir- 
cuits 1 xDLX-C-t, 2xDLX-CA-t, and 2xDLX-CC-t are more interesting. The reduction in the 
number of relational variables makes it feasible to generate an OBDD representation of the tran- 
sitivity constraints. Compared to benchmarks 1 xDLX-C, 2xDLX-CA, and 2xDLX-CC, we see 
there is a significant, although tolerable, increase in the computational requirement to verify the 
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modified circuits. This can be attributed to both the more complex control logic and to the need to 
apply the transitivity constraints. 

For the 100 buggy variants of 2xDLX-CC, Fsat depends on up to 52 relational variables, 
with an average of 17. This yielded OBDDs for i*trans(£+) ranging up to 93,937 nodes, with 
an average of 1,483. The OBDDs for Fsai A Ftrans(£+) ranged up to 438,870 nodes (average 
25,057), showing that adding transitivity constraints does significantly increase the complexity of 
the OBDD representation. However, this is just one OBDD at the end of a sequence of OBDD 
operations. In the worst case, imposing transitivity constraints increased the total CPU time by a 
factor of 2, but on average it only increased by 2%. The memory required to generate Fsat ranged 
from 9.8 to 50.9 MB (average 15.5), but even in the worst case the total memory requirement 
increased by only 2%. 

6    Conclusion 

By formulating a graphical interpretation of the relational variables, we have shown that we can 
generate a set of clauses expressing the transitivity constraints that exploits the sparse structure 
of the relation. Adding relational variables to make the graph chordal eliminates the theoreti- 
cal possibility of there being an exponential number of clauses and also works well in practice. 
A conventional SAT checker can then solve constrained satisfiability problems, although the run 
times increase significantly compared to unconstrained satisfiability. Our best results were ob- 
tained using OBDDs. By considering only the relational variables in the true support of -Fsat> we 
can enforce transitivity constraints with only a small increase in CPU time. 

References 

[Bry86] R. E. Bryant, "Graph-based algorithms for Boolean function manipulation", IEEE 
Transactions on Computers, Vol. C-35, No. 8 (August, 1986), pp. 677-691. 

[Bry91] R. E. Bryant, "On the complexity of VLSI implementations and graph representa- 
tions of Boolean functions with application to integer multiplication," IEEE Trans- 
actions on Computers, Vol. 40, No. 2 (February, 1991), pp. 205-213. 

[BGV99a] R. E. Bryant, S. German, and M. N. Velev, "Exploiting positive equality in a logic of 
equality with uninterpreted functions," Computer-Aided Verification (CAV '99), N. 
Halbwachs, and D. Peled, eds., LNCS 1633, Springer-Verlag, July, 1999, pp. 470- 
482. 

[BGV99b] R. E. Bryant, S. German, and M. N. Velev, "Processor verification using efficient 
reductions of the logic of uninterpreted functions to propositional logic," Tech- 
nical report CMU-CS-99-115, Carnegie Mellon University, 1999. Available as: 
http://www.cs.emu.edu/~bryant/pubdir/cmu-cs-99-115.ps. 

19 



[BD94] J. R. Burch, and D. L. Dill, "Automated verification of pipelined microproces- 
sor control," Computer-Aided Verification (CAV '94), D. L. Dill, ed., LNCS 818, 
Springer-Verlag, June, 1994, pp. 68-80. 

[Bur96] J. R. Burch, "Techniques for verifying superscalar microprocessors," 33rd Design 
Automation Conference (DAC '96), June, 1996, pp. 552-557. 

[GSZAS98] A. Goel, K. Sajid, H. Zhou, A. Aziz, and V. Singhai, "BDD based procedures for a 
theory of equality with uninterpreted functions," Computer-Aided Verification (CAV 
'98), A. J. Hu and M. Y. Vardi, eds., LNCS 1427, Springer-Verlag, June, 1998, 
pp. 244-255. 

[HP96] J. L. Hennessy, and D. A. Patterson, Computer Architecture: A Quantitative Ap- 
proach, 2nd edition Morgan-Kaufmann, San Francisco, 1996. 

[Lei92] F. T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, 
and Hypercubes, Morgan Kaufmann, 1992. 

[MS99] J. P. Marques-Silva, and K. A. Sakallah, "GRASP: A search algorithm for preposi- 
tional satisfiability," IEEE Transactions on Computers, Vol. 48, No. 5 (May, 1999), 
pp. 506-521. 

[M99] J. P. Marques-Silva, "The impact of branching heuristics in propositional satisfia- 
bility algorithms," 9th Portugese Conference on Artificial Intelligence, September, 
1999. 

[Rose70] D. Rose, "Triangulated graphs and the elimination process," Journal of Mathemati- 
cal Analysis and Applications, Vol. 32 (1970), pp. 597-609. 

[VB99] M. N. Velev, and R. E. Bryant, "Superscalar processor verification using efficient 
reductions of the logic of equality with uninterpreted functions," Correct Hardware 
Design and Verification Methods (CHARME '99), L. Pierre, and T. Kropf, eds., 
LNCS 1703, Springer-Verlag, September, 1999, pp. 37-53. 

[Yan81] M. Yannakakis, "Computing the minimum fill-in is NP-complete," SI AM Journal of 
Algebraic and Discrete Mathematics, Vol. 2 (1981), pp. 77-79. 

20 


